Космические эпохи можно определять по-разному. Хороший способ — посмотреть, что в тот момент генерирует больше всего энергии. Прямо сейчас это были бы звезды. Но со временем все звезды умрут и текущая эпоха завершится. Эпоха звезд началась с рождения первых звезд. Когда именно это случилось — неизвестно, но, по самым точным оценкам, примерно через 400 млн лет после рождения Вселенной. Теоретические модели показывают, что в то время температура и плотность газа, равномерно распределенного по Вселенной, снизились настолько, что он смог сжиматься под действием собственных сил тяготения.
Эту дату также подтверждают накопившиеся данные наблюдений. Хотя нам никогда не удавалось обнаружить именно те самые первые звезды — сейчас они были бы настолько далеко, что непосредственно увидеть их было бы практически невозможно, — они воздействовали на свое окружение, и вот это можно обнаружить. Те звезды должны были состоять только из водорода и гелия — это относительно простой состав по сравнению с современными звездами. Такой химический состав позволял ранним звездам быть гораздо массивнее в среднем, чем теперешние (благодаря более тяжелым элементам современные звезды горячее, поэтому они «включаются» при гораздо меньшей массе). Согласно некоторым моделям, масса тех звезд была гораздо выше, чем 100 масс Солнца. Они заливали пространство ультрафиолетовым светом, который ионизировал находящиеся вокруг них атомы водорода, срывая электроны.
Эти электроны поляризовали свет звезд: по сути, это означает, что все волны света, исходящего от звезд, были одинаково ориентированы, как люди в помещении, которые смотрят в одном направлении. Такой эффект поляризации можно обнаружить и сегодня, и в том, что касается времени появления первых звезд, наблюдения согласуются с теоретическими моделями.
Кроме того, в конце своей короткой жизни эти звезды должны были взорваться в виде сверхновых, разбрасывая вокруг первые тяжелые элементы Вселенной, из которых образуется следующее поколение звезд. Вероятно, при взрыве первых звезд возникали гамма-всплески, возможно, мы их еще обнаружим.
Мы по-прежнему живем в Эпоху звезд. Звезды — преобладающий элемент Вселенной; они генерируют большую часть энергии, которую мы регистрируем. Как мы видели в прошлой главе, через несколько сотен миллиардов лет в Млечном Пути закончатся запасы газа, из которого могли бы образовываться звезды, хотя некоторые галактики могут использовать свой газ более медленными темпами. Так или иначе, со временем газ закончится и во всей Вселенной практически никаких новых звезд рождаться не будет.
Мы знаем, что Солнце останется нормальной звездой еще несколько миллиардов лет, прежде чем превратится в красный гигант, зажарит Землю, потеряет свою внешнюю оболочку, а затем успокоится, превратившись в белый карлик. Но продолжительность жизни звезды практически полностью зависит от ее массы. Звезда с массой гораздо больше массы Солнца съедает свои запасы топлива гораздо быстрее и может прожить всего от нескольких миллионов до миллиарда лет. Однако звезды с гораздо меньшей массой проживут дольше.
В настоящее время наименьшая возможная масса звезды составляет примерно 0,08 массы Солнца. При более низкой массе температура или давление в ядре будут недостаточно высокими и гелий не будет синтезироваться из водорода. Звезда такого типа — маленькая (1/10 диаметра Солнца), тусклая (1/1000 светимости Солнца), холодная (температура примерно 2760 °C) и красная. Неудивительно, что такие звезды называют красными карликами.
Представьте, что вы берете большую каменную глыбу и ударяете по ней кувалдой, разнося на куски. Среди этих кусков вы, возможно, увидите несколько крупных фрагментов, еще несколько меньшего размера и целую кучу мелких камешков и осколков. Похоже на естественное распределение звезд по размерам: когда газовое облако сжимается и из него образуются звезды, лишь несколько из них будут очень большими, некоторые будут меньшего размера, а многие еще меньше. Подавляющее большинство будет самых маленьких размеров; по оценкам, 75 % всех звезд во Вселенной являются красными карликами.
Хотя их масса составляет лишь небольшую долю массы Солнца, красные карлики невероятно скупо расходуют свое топливо и могут жить гораздо, гораздо дольше. Карлики с очень малой массой вполне могут сиять еще в течение нескольких триллионов лет.
Это дольше, чем любой другой тип звезд во Вселенной. Если мы переведем стрелки космических часов вперед, то увидим рождение последних звезд через несколько миллиардов лет. Очень скоро после этого все массивные звезды исчезнут, так как они живут недолго. Коллапс ядра последней сверхновой во Вселенной может произойти всего через 100 млн лет после рождения последней массивной звезды. Это одна секунда по сравнению с тем, сколько времени уже прошло во Вселенной.
Вскоре после того, в определенный момент, где-то во Вселенной звезда с массой чуть меньше, чем требуется для взрыва, состарится и умрет, раздувшись до красного гиганта, сбросив внешние оболочки и угаснув в виде белого карлика. Это лишь одно из длинной-длинной череды подобных событий: в нашей Вселенной 100 млрд галактик, и в каждой в среднем примерно 100 млрд звезд.
С течением времени триллионы звезд все меньшей и меньшей массы потухнут и умрут. Звезды с самой низкой массой продержатся дольше всего, но в определенный момент все они пересекут финишную черту.
Если подождать достаточно долго — ну, скажем, триллион лет, — всех звезд, подобных Солнцу, уже давно не будет, останутся только карлики с самой малой массой. Возможно, в течение нескольких десятков миллиардов лет галактика будет сиять демоническим красным светом, после чего постепенно изменит оттенок на более насыщенный голубой.
Но, как говорится, хорошенького понемножку. Со временем умрут даже карликовые звезды. В отличие от Солнца, ядерный синтез в котором может происходить только в ядре, в самых маленьких красных карликах топливо циркулирует. Подобно тому, как горячий воздух поднимается, а холодный опускается, гелий, созданный в ядре, поднимается вверх и смешивается с веществом звезды. Ядра водорода, опускающиеся в ядро звезды, могут сливаться с образованием нового гелия, который снова смешивается с веществом звезды.
Со временем в звезде заканчивается водород — и в отличие от Солнца, в котором заканчивается доступный водород в ядре, водород в карлике заканчивается совсем. Его больше нет. Пропал. С концами. Все, что осталось в звезде, — это гелий, но его массы не хватает для того, чтобы запустился синтез углерода. Звезда остывает, гелий сжимается — и звезда превращается в вырожденный белый карлик из чистого гелия .
Через семь или восемь триллионов лет в Млечном Пути (ну, в Млекомеде, после того как мы столкнемся с галактикой Андромеды и, вероятно, также поглотим все мелкие галактики в Местной группе) последняя карликовая звезда превратится в белого карлика. В течение триллионов лет Галактика продолжит светиться красивым синим светом, но и это пройдет.
Интересно, но на этом последнем этапе Эпохи звезд некоторые звезды с еще более низкой массой будут по-прежнему сиять. Так как в звездах с большой массой создаются более тяжелые элементы, такие как железо и магний, звезды, образующиеся позднее, будут насыщены этими веществами. Более тяжелые элементы делают звезду горячее (они поглощают свет звезды, задерживая тепло внутри), поэтому звезды с более низкой массой — возможно, даже в таком легком весе, как 0,04 массы Солнца, — смогут запустить реакции синтеза в своем ядре. Но повторюсь, нам нужно учитывать продолжительность времени: даже если превращение таких звезд в белые карлики будет отсрочено на 15 трлн лет, этот момент все равно наступит. В определенное время все звезды во Вселенной исчезнут, превратятся в белые карлики, нейтронные звезды или черные дыры.
Крошечные белые карлики со временем тускнеют (нейтронные звезды остывают даже еще быстрее), и в конце концов в Галактике совсем не остается звезд с активным синтезом элементов в ядре. В течение следующих нескольких триллионов лет эти звезды также гаснут. К тому времени, когда Вселенной будет 100 трлн лет от роду, галактики — и, следовательно, сама Вселенная — будут темными. Филип Плейт
Комментарии 2